homework
Feasible Intersection Patterns
Problem
Let us call a sequence $(a_1, a_2, \dots, a_n) \in \mathbb{N}_0 \quad feasible$ if there are sets $A_1, \dots, A_n$ such that all k-wise intersections have size $a_k$.
That is, $\lvert A_i \rvert = a_1$ for all $i$, $\lvert A_i \cap A_j \rvert = a_2$ for all $i \neq j$ and so on.
For example, $(5, 3, 1, 0)$ is not feasible, but $(6, 3, 1, 0)$ is.
Hint
A problem may become easier if you:
- make it more general
- change it a little bit
A-Table
Definition
Given $A_1, A_2, \dots, A_n$ , $I \subseteq {1, 2, \dots, n}$
define $A_I = \bigcap_{i \subseteq I} A_i$
Example
\[A_1 = \lbrace 1, 2, 3, 4 ,7 \rbrace\] \[A_2 = \lbrace 3, 4, 5, 6 \rbrace\] \[A_3 = \lbrace 1, 2, 3, 5, 8, 9 \rbrace\]Then, $A_{ \lbrace 1, 2\rbrace } = A_1 \bigcap A_2 = \lbrace 3, 4 \rbrace$
Intersection table
I | {1} | {2} | {3} | {1, 2} | {1, 3} | {2, 3} | {1, 2, 3} |
---|---|---|---|---|---|---|---|
$\lvert A_I \rvert$ | 5 | 4 | 6 | 2 | 3 | 2 | 1 |
$(a_1, a_2, \dots, a_n)$ to A_Table
I | {1} | {2} | $\dots$ | {n} | {1, 2} | $\dots$ | {n-1, n} | $\dots$ | {1, 2, $\dots$, n} |
---|---|---|---|---|---|---|---|---|---|
$\lvert A_I \rvert$ | $a_1$ | $a_1$ | $\dots$ | $a_1$ | $a_2$ | $\dots$ | $a_2$ | $\dots$ | $a_n$ |
Is it easy to judge the table feasible?
Absolutely, No!!!
B-Table
Definition of B-Table
Given $A_1, A_2, \dots, A_n$, $\varnothing \neq I \subseteq [n]$
define $B_I = (\bigcap_{i \in I} A_i) \setminus (\bigcup_{j \notin I} A_j)$
Example of B-Table
\[A_1 = \lbrace 1, 2, 3, 4 ,7 \rbrace\] \[A_2 = \lbrace 3, 4, 5, 6 \rbrace\] \[A_3 = \lbrace 1, 2, 3, 5, 8, 9 \rbrace\]Then, $B_{ \lbrace 1 \rbrace } = A_1 \setminus (A_2 \bigcap A_3) = \lbrace 7 \rbrace $
Table
I | {1} | {2} | {3} | {1, 2} | {1, 3} | {2, 3} | {1, 2, 3} |
---|---|---|---|---|---|---|---|
$\lvert A_I \rvert$ | 5 | 4 | 6 | 2 | 3 | 2 | 1 |
$\lvert B_I \rvert$ | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
Given a B-Table, is it easy to judge it feasible
Yes. Just every element is Non-negative integer.
Given a B-Table, how to compute an A-Table
For a set P in A-Table, adding all the set Q that $P \subset Q$.
Given a A-Table, how to compute an B-Table
Suppose we know B-Table. Express A-Table as above. Then solve equations to get B-Table.
Infinity sets
Examples
$ \mathbb{I, N_0, Q, R, N} $
Claim
$\mathbb{N_0, N}$ have same size
$\mathbb{N}$ | 1 | 2 | 3 | 4 | 5 | $\dots$ |
---|---|---|---|---|---|---|
$\mathbb{N_0}$ | 0 | 1 | 2 | 3 | 4 | $\dots$ |
There is a bijection function that:
\[f: \mathbb{N} \to \mathbb{N_0} \quad x \mapsto x-1\]Definition of cardinality
Let $\mathbf{A, B}$ be sets if there is a bijection $\mathbf{A} \leftrightarrow \mathbf{B}$, then we can say $\mathbf{A}$ and $\mathbf{B}$ have the same cardinality (not use size because it sounds like science) and mark $\mathbf{A} \cong \mathbf{B}$
More examples
- $\mathbb{N_0} \cong \mathbb{Z}$
$\mathbb{Z}$ | $\dots$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | $\dots$ |
---|---|---|---|---|---|---|---|---|---|---|---|
$\mathbb(N_0)$ | $\dots$ | 7 | 5 | 3 | 1 | 0 | 2 | 4 | 6 | 8 | $\dots$ |
-
$ \mathbb{Z} \times \mathbb{Z} \cong \mathbb{N} $
\[f: \mathbb{N} \to \mathbb{Z} \times \mathbb{Z} \quad x \mapsto the \ xth \ point \ on \ the \ path\] -
$ \mathbb{N_0} \cong \mathbb{Q} $
\(f: \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z} \\ q = \frac{a}{b} \ where \ b \in \mathbb{N} \ a \in \mathbb{Z}, gcd(a, b) = 1\) \(see \quad q \to (a, b) \\ \begin{cases} injection: q_1 \neq q_2 \Rightarrow f(q_1) \neq f(q_2) \\ surjection: \forall (a, b) \in \mathbb{Z} \times \mathbb{Z} \quad \exists q \in \mathbb(Q) \quad f(q) = (a, b) ? \quad No! \end{cases}\)
So how?
-
Another Definition
If there is an injection $f: \mathbf{A} \to \mathbf{B} $, then we can say $\mathbf{A} \subseteq \mathbf{B}$ and $\mathbf{A}$’s cardinality is at most $\mathbf{B}$’s cardinality.
-
Therefore, $\mathbb{Q} \le \mathbb{Z} \times \mathbb{Z}$
-
How about $\mathbb{Z} \times \mathbb{Z} \le \mathbb{Q}$? \(\mathbb{Z} \times \mathbb{Z} \to \mathbb{N_0} \to \mathbb{Q} \quad if (x \mapsto x )\)
-
So, how about $\mathbb{N_0} \cong \mathbb{Q}$
- $\mathbb{Q} \subseteq \mathbb{Z} \times \mathbb{Z} \subseteq \mathbb{N_0} $
- Obviously, $\mathbb{N} \subseteq \mathbb{Q}$
- So, $\mathbb{N} \cong \mathbb{Q} $
-
-
$\lbrace 0, 1 \rbrace^N \cong 2^N$
- $2^N$: power set, the set of all subsets. So every number $\in 2^N$
- $\lbrace 0, 1 \rbrace^N$: the set of all infinite but sequence $(a_1, a_2, \dots) \quad a_i \in \lbrace 0, 1 \rbrace $
\(010101 \dots \mapsto \lbrace 2, 4, 6, \dots \rbrace\) \(0110101 \dots \mapsto \lbrace 2, 3, 5, 7, \dots \rbrace\) \(1111 \dots \mapsto \mathbb{N}\)
- $ \lbrace 0, 1 \rbrace^N \cong \mathbb{R} $
- $f: \mathbb{R} \mapsto \lbrace 0, 1 \rbrace^N$, injection?
- $g: [0, 1) \mapsto \lbrace 0, 1 \rbrace^N$:x write in binary as $(x)_2 = 0.a_1 a_2 \dots $
- Every $x \in [0, 1) \mapsto $binary, $x \mapsto (a_1, a_2, \dots, a_n) \in \lbrace 0, 1 \rbrace^N $
- $\frac{1}{2}: 0.1000\dots$
- $\frac{1}{3}: 0.010101\dots$
- $\frac{1}{4}: 0.0100\dots$
- Injection, but not surjection!